Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling
نویسندگان
چکیده
منابع مشابه
Generalized drag force for particle-based simulations
Computing the forces acting from a surrounding air phase onto a particle-based fluid or rigid object is challenging. Simulating the air phase and modeling the interactions using a multiphase approach is computationally expensive. Furthermore, stability issues may arise in such multiphase simulations. In contrast, the effects from the air can be approximated efficiently by employing a drag equat...
متن کاملNumerical simulations of a fluid-particle coupling
We present numerical simulations of a model of coupling between a inviscid compressible fluid and a pointwise particle. The particle is seen as a moving interface, through which interface conditions are prescribed. Key points are to impose those conditions at the numerical level, and to deal with the coupling between an ordinary and a partial differential equations.
متن کاملLarge scale drag representation in simulations of two-dimensional turbulence
Numerical simulations of isotropic, homogeneous, forced and dissipative two-dimensional ~2D! turbulence in the energy transfer subrange are complicated by the inverse cascade that continuously propagates energy to the large scale modes. To avoid energy condensation in the lowest modes, an energy sink, or a large scale drag is usually introduced. With a few exceptions, simulations with different...
متن کاملThermo-mechanical high-cycle fatigue analysis of exhaust manifold of turbocharged engine with two-way coupling FSI
NNowadays, car manufactures in order to increasing torque and power with consider to fuel consumption, have swept to production of turbocharged engines. With consider to exhaust gas-temperature rises in boosted engines, recognition of critical locations of exhaust manifold in the worse condition of engine (full load and maximum speed), to prevent fracture of exhaust manifold is very important. ...
متن کاملHydrodynamical Drag in Cosmological Simulations
We present a study of hydrodynamic drag forces in smoothed particle simulations. In particular, the deceleration of a resolution-limited cold clump of gas moving through a hot medium is examined. It is found that the drag for subsonic velocities exceeds that predicted by simple physical approximations. This is shown to be a result of the hydrodynamical method which encourages the accretion of p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2017
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2017.02.070